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OBJECTIVE

To investigate the effect of acute hyperglycemia on brain function in adolescents
with type 1 diabetes (T1D).

RESEARCH DESIGN AND METHODS

Twenty participants with T1D (aged 14.646 1.78 years) and 20 age-matched healthy
control subjects (aged 14.406 2.82 years) performed two functional MRI sessions.
Participants with T1D performed the first scanning session under euglycemic and
the second under hyperglycemic clamp (20 mmol/L [360 mg/dL]).

RESULTS

Lower spatial working memory (sWM) capacity during acute hyperglycemia and
significant differences in activation of regions of interest during different stages of
the sWM task (P 5 0.014) were observed.

CONCLUSIONS

Acute hyperglycemia negatively affected sWM capacity in adolescents with T1D,
which is relevant for daily functioning and academic performance.

Type 1 diabetes (T1D) has an impact on the structure and function of the brain in
children and adults (1,2). Basic intelligence, psychomotor processing speed, mental
flexibility, and attention are noted to be permanently reduced (1,3). Hyperglycemia
may have more deleterious effects on the brain than hypoglycemia (1,4).
Spatial working memory (sWM) is decisive in achieving better academic perfor-

mance (5). We investigated the effects of acute hyperglycemia on sWM in adolescents
with T1D.

RESEARCH DESIGN AND METHODS

The primary outcome of this open-label clinical trial (NCT03188757, NationalMedical
EthicsCommittee0120–476/2017/2)was thedifference in sWMcapacityduringacute
hyperglycemia compared with euglycemia in adolescents with T1D.
Inclusion criteria were age 11–19 years, duration of T1D 5–10 years, and no severe

hypoglycemicepisodeordiabetic ketoacidosiswithin thepreviousyear. Thecontrol group
consisted of age-matched healthy adolescents, not related to participants with T1D.
After an overnight stay to maintain stable glycemia, participants with T1D started

with an intravenous euglycemic clamp, duringwhich functionalMRIwith an sWMtask
and MRI spectroscopy were performed. Capillary blood glucose concentration was
measured (CONTOUR NEXT; Ascensia, Parsippany, NJ) every 15 min and maintained
between 5 and 10 mmol/L (90–180 mg/dL). Afterward, the blood glucose level was
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Anka Slana Ozimič,3 Andrej Vovk,4
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raised by an intravenous glucose bolus, and
a hyperglycemic clamp (6) was maintained
between15and25mmol/L(270–450mg/dL)
for 2 h, during which participants repeated
the scanning protocol.
To control for the effects of learning

and fatigue, healthy control subjects
followed the same experimental proto-
col, but without any manipulation of
glycemia.
Participantswere familiarizedwith the

spatial variation of the Sternberg item-
recognition task (7) prior to the scanning
sessions. Group differences and the ef-
fect of induced hyperglycemia on sWM
capacity estimates were assessed using
a two-way mixed-design ANOVA with
within-subject factor session (first vs.
second session) and between-subject
factor group (participants with T1D vs.
healthy control subjects). The analysis
was performed using the ez-package (8)
separately for sWM loads of two and four
items.
Neuroimaging data were acquired

with an Achieva 3.0T TX scanner (Philips,
Best, the Netherlands). T1- and T2-
weighted high-resolution images were
acquired, and in each functional session,
three T2*-weighted blood oxygen level–
dependent images concurrentwith sWM
task performance, followed by spectros-
copy scan using SV-PRESS sequence,
were obtained.
Initial image preprocessing followed

the Human Connectome Project minimal
preprocessing pipeline (9). Further anal-
yses were conducted using FreeSurfer
(https://surfer.nmr.mgh.harvard.edu)
(10) and in-house code using MATLAB
2014a (https://mathworks.com) and R
(11) software packages.
The analysis of functional data was

performed on a priori selected regions
of interest (ROIs) (frontal eye fields,
supplementary motor area, anterior in-
sula, anterior intraparietal area, medial
intraparietal area, inferior frontal junc-
tion, dorsolateral prefrontal cortex, and
medial temporal lobe) (8). The selected
ROIs are involved in the spatial informa-
tion forming and its maintenance and
executive control (12,13). Separate esti-
mates of brain activation during encod-
ing, delay, and response phase for each
session and sWM load were obtained
using a general linear model. Individual
activation estimates for each ROI were
then submitted to a second-level anal-
ysis. The effects of interest on mean ROI

responses were investigated using a
mixed-effects ANOVA with within-subject
factors session (first vs. second), load (2 vs.
4), task phase (encoding, delay, and re-
sponse), hemisphere (left vs. right), ROI,
and a between-subject factor group (par-
ticipants with T1D vs. healthy control
subjects).

In the frontal cortex, ratiosofmagnetic
resonance relaxation–corrected surface
areas of N-acetyl aspartate, choline, and
creatine were compared within each
group and between the groups after
functional MRI sessions. The Wilcoxon
rank-sum test (between groups) and
Wilcoxon signed-rank test (paired differ-
ence inside groups between the first and
second measurements) were used; cor-
relation between the blood glucose
concentration and metabolites was as-
sessed with linear mixed-effects model,
all using R.

RESULTS

Twenty adolescents with T1D (mean
14.64 6 1.78 years of age; 10 female;
mean T1D duration 8.00 6 2.45 years)
and 20 healthy age-matched control
subjects (mean 14.4 6 2.82 years of
age; 15 female) completed the study
protocol. Fifteen adolescents with T1D
and 19 control subjects were included
in the final analysis (6 were excluded due
to motion-related artifacts) (Supplementary
Table 1 and CONSORT flow chart in Supple-
mentaryMaterial). The average blood glu-
cose level was 7.66 2.0mmol/L (1376
36 mg/dL) during the euglycemic clamp
and 20.1 6 2.4 mmol/L (362 6 43 mg/dL)
during the hyperglycemic clamp.

Behavioral analysis of the number of
retained positions in the sWM task at
load four revealed a significant group 3
session interaction (P50.048), reflecting a
robust decrease in the estimated number
of successfully retained positions in ado-
lescents with T1D versus an increase in
healthy control subjects from session 1 to
session 2 (Supplementary Fig. 1).

Analysis of brain activation on a priori
ROI (Fig. 1A) revealed a significant (P 5
0.014) group 3 session interaction,
reflecting a decrease of activation in
the second session from overall higher
values in adolescents with T1D as com-
pared with only moderate increase in
activation in healthy control subjects
(Fig. 1B). A significant (P 5 0.016)
group 3 session 3 task phase 3 side
interaction indicated more specific

differences in the effect of the session
between groups (Fig. 1C). Separate anal-
yses for each combination of task phase
(encoding, delay, and response) and
hemisphere (left vs. right) revealed sig-
nificant group3 session interaction dur-
ing responsephase in left (P50.046) and
right (P 5 0.016) hemisphere, as shown
in the response time course for the two
groups averaged across ROIs (Fig. 1D).

Spectroscopy revealed a significant
decrease in of N-acetyl aspartate, cho-
line, and creatine (P , 0.01, P , 0.005,
and P, 0.01, respectively) at the end of
the hyperglycemic clamp. This decrease
correlated significantly (P , 0.01, P ,
0.01, and P, 0.05, respectively) with the
increase inbloodglucoseconcentrations.
The ratios among the metabolites did
not change significantly. No significant
change in metabolite levels were ob-
served in the control group.

CONCLUSIONS

The significantly reduced sWM capacity
in adolescents with T1D during acute
hyperglycemia observed in our study
substantiates previous observations showing
a decrease in intelligence quotient scores
in children with T1D (4) and impaired WM
in adults with T2D, both during acute
hyperglycemia (14).

Our study is thefirst to suggest a direct
effect of acute hyperglycemia on sWM.
Significantly higher overall brain activa-
tion in adolescents with T1D compared
with healthy control subjects during the
first session reversed to an overall de-
crease of activation in the second ses-
sion during hyperglycemia. The increased
brain activity during response phase
could be a compensatory mechanism
for less efficient encoding of stimuli
(12). During high sWM load, a failure
to engage this compensatory mecha-
nism, observed as a significant drop in
activation, could explain the reduced
sWM capacity during hyperglycemia.

The overall significant decrease of
metabolites in the frontal cortex during
hyperglycemia could be related to a con-
comitant increase in local water content.
Hyperglycemia affects the blood-brain
barrier and may contribute to clinically
silent water content changes in brain
regions (15). No changes were observed
in the control group.

Our study has limitations: it is single
center, included a limited number of
participants, and used restricted magnetic
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resonance acquisitions. The results could
be related to other factors than acute
hyperglycemia or T1D: changes in the
water content or diabetic ketoacidosis
at T1D onset (present in 6 out of
20 participants).
sWM enables easily accessible infor-

mation maintenance over brief time pe-
riods and is crucial for goal-directed
behavior (12). The impact of acute hy-
perglycemia on sWM has a direct clinical
implication for school performance and
other cognitive challenges in this vulner-
able population with T1D.
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